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I. Following [l, 2], we shall use the theory of free interaction [3-5] to study long 
wavelength perturbations at the inlet to a flat semiinfinite channel. We shall assume that 
two harmonic oscillators, placed at opposite walls, are the source of the perturbations. In 
order to give the characteristic frequency of the waves generated by them, we shall introduce 
the small parameter ~ = R -I/5, where the Reynolds number R is calculated according to the 
width of the channel b*, the velocity of the flow U~ at its outlet and the kinematic viscos- 
ity v*. According to the basic concepts of the theory of free interaction, the frequency 
~* = O(eU*/b*). As far as the location of the oscillators with length l* = O(b*) is con- 
cerned, we shall assume that they are located at a distance L* = O(~-3b *) from the inlet. 

We shall divide the velocity field on both sides of the central axis of the vessel, 
which coincides with the x* axis of a Cartesian coordinate system x*, y*, into three regions. 
In regions l and 2, forming the core of the flow, the perturbations have a potential char- 
acter. Regions 3 and 4 form the main part of the boundary layers at the channel walls and 
in these regions, the perturbations remain locally nonviscous, but they do contain vortices. 
The nature of the perturbed motion in the narrow near-wall layers 5 and 6 depends consider- 
ably on the viscosltv of the liquid; here we can no lon~er neglect the tangential stresses. 

We shall denote the time by t*, the components of the velocity vector by u* and v*, the 
density by p*, and the pressure by p*, in which we separate out a constant part p*. In what 
follows, it will be useful to combine regions l and 2 into a single region 0, assuming that 
in this region 

t* = ~-l b* x* b* (8-%~ x),  y* t ,  = ~- = b*Yo, ( 1.1 
~oo" 

u* = U= [1 + ~Uo (t, z, yo) + . , .  ] ,  

: * 2 v* U~[~ vo(t, x, Yo) + . . . 1 ,  

p* = p*  + p*Y .2 [e~po (t, ~, ~o) + . . . ] "  

Substituting the equations written above into the Navier--Stokes equations for an incom- 
pressible fluid gives 

Opo/OX - -  Ovo/Oyo~= O, Opo/Oy o -]- Ovo/Ox = O,  ( 1 . 2 )  

UO : - - P O t  

from where we conclude that the functions po and Vo are harmonically conjugate. 

As usual in the theory of free interaction, the asymptotic equations for the increments 
to the parameters of the fluid in regions 3 and 4 are integrated in explicit form [3-5]. We 
shall omit the corresponding relations, since in what follows we do not need to know them. 

We shall introduce the independent variables and the functions sought in layers 5 and 6 
next to the walls as follows: 

(+ ) t*=~-~ t ,  ~*=b*(~-%+~), y*=b* :~ +~y~,,, (~.3) 

7~ TT~ 3 u* = ~ ~ [~u~,~ (t, x, ys,~) + . . .  l, v* = c, ~ [~ vs.e (t, x,  ys.,) + . . .  1, 

p* = p~ + ~ * u : f  [~p~.~ (t, x,  w,o) + . . . 1 .  

Here, the dimensionless functions satisfy Prandtl's equations 
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Ous,8/ax-4- Ovs, J@5,r = 0, @5,6/Oy~,e = 0, ( 1 . 4 )  

Ous,G/~t § u6,6Ous,s/Ox + v~,60u~,6/Oys,~ = - -  Ops,6/Ox + O~u~,e/Oy~,e, 

in which the gradient ~ps.6/~x of the self-induced pressure is found from the conditions for 
joining expansions (1.1) and (1.3) through intermediate regions 3 and 4. 

Let % = 0.3321 be a constant that determines the surface friction in the Blasius solu- 
tion for the boundary layer on a flat plate [6], while A3(t, x) and A4(t, x) are arbitrary 
functions that are proportional to the deviations of the streamlines from horizontal straight 
lines in the corresponding regions. The boundary conditions obtained in the joining process 

at yo =~I/2 give 

aps, elOx = OvolOyo, Vo = --OAs,410x. ( 1 . 5 )  

In addition, for y5.6 § • we have 

u5,6 ~ (~/'vr~)ys,6 -+ _,--L'_(~I ]/r~'~A~,4(t, x). (1 .6 )  

In all three regions 0, 5, and 6 examined, the perturbations must damp out at infinity 
upstream. 

It remains to write the condition for sticking of the fluid to the surfaces past which 
it flows. Denoting the amplitude of the oscillations of the oscillators by ~2ab*, we shall 
give them in the form 

1 b* " ( x*-e-sxeb*~ = e~ab*e~w*t*hs~ Y* ~ - Z  . -~ /" 

- - 1 ~  ~ 1 . ~  Since the dimensionless frequency ~ = ~ D ~"IU~, 

ua,r = O, Vs, 6 = ia~ei~5,r  with Y5.r = aet~a.6(x) �9 ( 1 . 7 )  

2. Le t  t he  a m p l i t u d e  f a c t o r  s a t i s f y  a<<  I .  The d i s p l a c e m e n t s  i n  the  s t r e a m l i n e s  and 
the  p r e s s u r e  i n c r e m e n t  can be assumed to  be  p r o p o r t i o n a l  t o  i t ,  i . e . ,  

! r 

(An,4, P5,6) = ae~e~ [A3,4 (x), p~,a (x)].  ( 2 . 1 )  

The v e r t i c a l  component  vo = a e i ~ t v ~ ( x ,  Yo) o f  t he  v e l o c i t y  i n  t he  c e n t r a l  r e g i o n  0, where  i n  
v iew o f  (1 .2 )  i t  s a t i s f i e s  L a p l a c e ' s  e q u a t i o n ,  has  an a n a l o g o u s  fo rm.  We s h a l l  expand the  
f u n c t i o n s  d e n o t e d  by the  p r ime  i n  F o u r i e r  i n t e g r a l s  w i t h  r e s p e c t  to  t he  l o n g i t u d i n a l  c o o r d i -  
n a t e :  

[A3,4 (k), P5,6 (k), ~ (k, Yo)] = ~ e--~hx [A~.a (x), P~,6 (x), v0 (x, g0)] dx. ( 2 . 2 )  

D e n o t i n g  t h e  a r b i t r a r y  c o n s t a n t s  by b and d, we f i n d  ~o = be ky~ + de - k y ~  From the  
b o u n d a r y  c o n d i t i o n s  (1 .5 )  a t  yo = ~ 1 / 2 ,  i t  f o l l o w s  t h a t  

ik~a, 4 = --(beT(i/2)~ -f- de~(i/2m), ip-"5.e = be ~(i/~)~ ~ d e  ~(~/~)~. ( 2 .3 )  

We s h a l l  r e p r e s e n t  the  v e l o c i t y  f i e l d s  i n  t he  n e a r - w a l l  l a y e r s  5 and 6 as 
I 

ae~t[u" (x, gs,~), v~,~(x, g~,s)], (2 4) (u~,~ ~ ~y~,~, v~,~) = t ~,~ 
where  t he  c o n s t a n t  Pe = Xx~ ~/~.  S u b s t i t u t i n g  Eqs.  ( 2 .6 )  i n t o  the  P r a n d t l  e q u a t i o n s  p e r m i t s  
l i n e a r i z i n g  the  l a t t e r  w i t h  r e s p e c t  to  the  p e r t u r b a t i o n  a m p l i t u d e  a .  We s h a l l  expand the  
f u n c t i o n s  u~ . s  and v s . s  d e f i n e d  by the  l i n e a r  e q u a t i o n s  i n  F o u r i e r  i n t e g r a l s  o f  t h e  form (2 .2 )  
and we s h a l l  e x p r e s s  t h e i r  t r a n s f o r m s  u s . s ( k ,  y s . s )  and v ~ . s ( k ,  y ~ . ~ )  w i t h  t he  h e l p  o f  t he  
relations 

u~,6 = --df~,~ldy~,~, v~,~ = ik~,~(k, ~,~). 

The linearization of equations (1.4), derivation of the ordinary differential equations 
for the functions fs and f~ and integration of the latter follow the outline in [7]. The 
sticking boundary conditions 

]~,~ = (o)/k)h~,~, d]a,s/dy~,a = _____p~h~,s at y~,a = 0 (2 .5 )  

follow from (I.7) and, in addition h~.~(k) indicate the Fourier transforms of the oscillators 
h~.s(x) at the lower and upper walls. Let us introduce the complex variables 

z~,~ = ~ ~ W~(~ k)~/s~,~, ~ = ~ / ~ ( ~  k)-~/s. 
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As a result, we have the derivatives 

z 5 

dz--~5 . . . .  ~ ,~  - -  I~-~1-P5 k ~ %  J J A i  (z) dz ,  

z 8 

satisfying the second conditions in (2.5). Integration of Eqs. (2.6) gives the functions fs 
and f~, which satisfy the first of the conditions indicated. 

It remains to satisfy the requirements (1.6) at the outer edges of the boundary layers. 

In the new variables, 

dfa,a/dza,e ---- - -  i l / 3 k - l ] 3 1 x 2 [ 3 A  5 6 for [gli,6[...~(~l, 

from which we derive the relation 

3~ =: - 7~ + #~k~/~Tu~(I)-~ (D p~, 

. ~  = - & - ~/~kU%-~/~r -~ (~) ~o, r ( ~ ) =  A~ (~) d~ 

between the quantities A3., and ps.~. Substituting into these relations (2.3), we obtain in- 
homogeneous linear equations determining the constants b and d: 

k W~4i3,,5,3~ 1 ~l ,  k [~ (~)h++ 613k41~513f~ lsh -~- ( 2 . 7 )  [ ~ '  (~) ~_ + . . .  ~ ,  . - + j  ~ -  - - f - -  ~ - ,  

k - k 
[ - -  ill~kal3,,sM~ I ch -- A- [~ Ir~h iZ13k~13,,s/3~ 1 sh -- ~ r  ~'~ +.....___....j_~ ~ ,__~_,~, + ~  - ~  -________~....._i.~ 

e k iz/akal3 5/a sh k q) sh k _ _  ii]3k,l/3 518 c k ' 

~+ = ~ + h~, ~- = $~ - -  ~.  

3. I f  t he  d e n o m i n a t o r  on the  r i g h t  s i d e s  o f  ( 2 . 7 )  i s  e q u a t e d  to  z e r o ,  t h e n  we o b t a i n  
the  f o l l o w i n g  two d i s p e r s i o n  r e l a t i o n s :  

F,~I~(I) (~) = k ( ik)  ~I~ cth (k/2), ~13~p (~) = k ( ik) ~/a th (k/2) ( 3 .1 )  

f o r  t he  f r e q u e n c i e s  and wave numbers  o f  t he  f r e e  s y r m n e t r i c a l  and a n t i s y m m e t r i c a l  waves ,  r e -  
s p e c t i v e l y .  We s h a l l  b r i e f l y  p r e s e n t  t he  p r o p e r t i e s  of  t he  r o o t s  o f  ( 3 .1 )  i n  t h e  complex  k 
p l a n e  w i t h  t he  p o s i t i v e  i m a g i n a r y  s e m i a x i s  cu t  o u t ,  a s suming  t h a t  t he  r e g u l a r  b r a n c h  o f  the  
t h r e e - v a l u e d  f u n c t i o n  k ~/s  i s  g i v e n  by the  c o n d i t i o n s  - -3~/2~< a r g  k ~ v / 2 .  

I f  ~ i s  f i x e d ,  t h e n  t h e r e  e x i s t  f o u r  i n f i n i t e  s e q u e n c e s  of  c h a r a c t e r i s t i c  wave numbers 
b o t h  f o r  t he  s y m m e t r i c a l  and f o r  t he  a n t i s y m m e t r i c a l  w a v e s .  The f i r s t  o f  them i s  mos t  e a s i l y  
found from the results in [8] for the boundary layer on an isolated plate first on the plane 
5. We shall let ~ = @'I~Js/2--~0 and [~I § ~ , while ~'l~Is/2-+0 �9 For any root with number j § 

I ~Jl = [(3.~/2)(j -]- t /4)  ]2/3 ( 3 . 2 )  

The symmetrical waves are characterized by the equality 

, 9 .  V ~  _~/:r3~ I .  ~ t I]-7lekl/3 ( 3 . 3 )  
~, = ( -  ~ ) ~ - z -  ~ L ~  ~,s , ~ j  , 

w h i l e  the  a n t i s y m m e t r i c a l  waves a r e  c h a r a c t e r i z e d  by the  e q u a t i o n  

O:j=(--t)'+a~la-~sl~[-~-(]-]-+)]-'/~kT'a" (3.4) 

Thus, each of the dispersion relations (3.1) has an infinite sequence of roots kj in the 
vicinity of the ray arg k =--5~/4 with an accumulation point at the origin. 

The presence of three more infinite sequences of roots in the complex k plane is due to 
the fact that hyperbolic functions enter on the right side of (3.1). Two of these sequences 
are situated along the edges of the cut arg k = v/2 and arg k =--3v/2, while one is situated 

525 



/r 

0 0  o 

I o, 
040) 

Fig. 1. 

in the vicinity of the negative imaginary semiaxis. Let ~ = --l, 0, l, then the characteris- 
tic wave number with number n § ~ in symmetrical oscillations is determined by the equality 

k (Oan= 2 (n + t) ne ~(I-II~) -}- -,-anAdn, (3.5) 

halt) 2.3~18n-4/sr-~ ( i/3) sis t)-4%~r162 'o,,~ = -- ~e (2n + 
while in antisymmetric perturbations, it is given by the equation 

k(Z) 2n~e~g-l/~) A~(t) ( 3.6 ) 
- ( t )  h~a~ = --'2.3~1~-4/8I '-~ 0/3) ~[~ (2n)-~% ~"(ll~-(~l~)z) . 

Let us now turn to the basic ideas of the linear theory of stability, whose results for 
long wavelength perturbations with R § = coincide with the results from the theory of free 
interactions [9, 10]. For this purpose, we shall assume k is a real negative quantity and 
we shall examine the roots of the dispersion relations (3.1) in the comPlex plane. The cal- 
culations show that for any ~e, the imaginary part of the first root m~ from sequences whose 
asymptotic form is described by Eqs. (3.2), (3.3), and (3.2), (3.4) changes sign when k passes 
through some critical value k,. As mentioned in [2], the critical values themselves m, < 0 
and k, < 0 can be found by simply rescaling according to the available data for an incompres- 
sible boundary layer on an isolated plate. Thus, for symmetrical characteristic waves, Us, = 
0.5736, ks, =--0.1248, while for antisymmetrical waves, me* = 2.9270, ka, = --1.4382 with ~e = 
I. It is significant that Us* < ua, for any Pe = O(1). From the intersections of the curves 
u1(k) with the abscissa axis it follows that the amplitude of the first mode of both the sym- 
metrical and antisymmetrical waves can become degenerate with time and increase exponentially. 
The remaining modes turn out to be stable. As far as the roots from the sequences with the 
asymptotic expressions (3.5) and (3.6) are concerned, they do not have analogs in the m plane. 

Let us examine the inverse Fourier transformations 

t p t i ~kx r'5 [A3,,(x ), p ~ , 6 ( x ) ] = ~ -  e [~3,,(k),'p~,~(k)ldk 
- - g c  

(3.7) 

in the complex k plane with the positive imaginary semiaxis cut out. Equations (2.1) together 
with (2.3) and (2.7) complete the construction of the streamlines and the pressure increment 
including their variation with time. 

The roots of each of the dispersion relations (3.1) for Pe = O(I) are shown schematically 
in Fig. |. Varying m causes a qualitative change in the pattern shown only in one respect: 
the root k1(m) is displaced from one half-plane into the other. The direction of this dis- 
placement with increasing m follows the arrow. Evidently, Re kl = k,, Im kl = 0 at m = m,. 
The root k2(m) is always located in the lower half-plane and, in addition, Re kl = 0 at u = 0. 

4. Since ms* < me*, we shall first assume that the frequency of the oscillators m < Us,. 
The field of the perturbations in the region x < 0 extending upstream from the sources is most 
easily obtained by using the closed contour which includes the arc of a semicircle in the 
lower half-plane k with a radius extending to infinity. We shall denote the integrand in 
(3.7) by 

T(k) = (t/2~)e ik~ [A3,4(k), ps, 6(k) I i (4 .1 )  
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Based on Jordan's lemma and Cauchy's theorem on residues, we have 

W(k) dk = -- 2n/[resW(k~2)-~- ~ res ~ (k(~ -~ resW(ka=) -{- ~ res ~ (k(aOn)). (4.2) 

The result obtained has a graphic interpretation: perturbations propagate upstream 
from the oscillators in the form of symmetrical and antisymmetrical Tollmin-Schlichting waves, 
arising from the roots ks2 and ka2 from sequences (3.2), (3.3) and (3.2), (3.4), and two in- 
finite trains of such waves, which are related to roots belonging to sequences (3.5) and 

(3.6) .  

In order to study the perturbations in the region x > 0, moving downstream beyond the 
sound sources, we shall use a closed contour, which includes the arc of a semicircle in the 
upper half-plane k with a radius extending to infinity. We shall denote the edges of the cut 
along the positive imaginary semiaxis by arg k = ~v/2 and arg k = --3~/2 by L~ and L2, respec- 
tively. As a result 

�9 (k)dk= --1~-~I2+2~i res ~ (k,i) (4.3) 
--co 1 

n=l n=l ]=i n=l n=l ' 

A = .I w 4 = .I w (k) 
L I L 2 

where the prime indicates that the index j = 2 is omitted in the summation. 

Thus, the nature of the perturbations moving downstream is twofold. The part arising 
from the residues consists of six infinite sequences of symmetrical and antisymmetrical 

Tollmin-Schlichting waves, whose parameters are determined by the characteristic functions 
of the problem of free oscillations. The wave number spectrum of each of the sequences is 
discrete. The other part of the perturbations, on the contrary, with parameters given by 
the integrals Ii and I2 along the edges of the cut, is characterized by a continuous spectrum. 

For u § Us, , the damping decrement in exp (ikslx) , entering in res P(ksl) , becomes 
arbitrarily small. As a result, the amplitude of the perturbations decreases extremely 
slowly downstream from the oscillators. When u = Usl, the root ks2 = ks, coincides with a 
point on the negative abscissa axis. In this case, the formal use of the integral transfor- 
mations leads to the result that it is necessary to subtract ~i res ~(ks,) from the right 
side of (4.3) and to carry over this quantity with opposite sign to the right side of (4.2). 
The amplitude of the oscillations is constant along the entire length of the channel with the 
exception of a small region near the sound sources. If Ua, > u > Ws, , then the root ksl 
moves into the lower half-plane, as a result of which the term 2~i res P(ksl) , which must be 
subtracted from expression (4.2), disappears entirely from expression (4.3). As long as u 
is not too much greater than Us, , the amplitude of the waves generated increases very moder- 
ately upstream from the oscillators. 

A similar pattern occurs with further increase in frequency. Indeed, for m § ~a*, the 
damping decrement in exp (ika~x) from res ~(kal) decreases indefinitely. When u = Ua,, the 
root ka~ = k~z, falls on the negative abscissa axis. In addition to the term 2~i res P(ksl), 
Hi res ~(kal) must be subtracted from the right side of (4.3) and both of these quantities 
should be carried over to the right side of (4.2) with opposite sign. The amplitude of the 
oscillations remains constant along the vessel upstream from the oscillators and increases 
exponentially downstream from them. If ~ > Ua, , then the root ka~ also moves into the lower 
half-plane. In this case, together with 2~i res P(ks~), the term 2~i res P(kal) also en- 
tirely drops out of expression (4.3), and both terms must be subtracted from expression (4.2). 
Thus, for u > Wa* , both exponentials exp (iks~x) and exp (ikalx) already control the increase 
in the amplitude of the emitted waves. 

We must make two remarks concerning the picture of the perturbations given by the inte- 
gral transformations. First, none of the experiments performed up to now have revealed the 
sharp increase in the intensity of the signals transmitted upstream, when the frequency of 
the oscillations passes through one of the critical values Us* or ~a*. Such data are also 
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absent for the degenerate oscillations in the boundary layer and developed viscous flow in a 
channel or pipe. Second, for m > Ws, and especially m > ma, the solution of the linear prob- 
lem being studied must be sought among a class of functions increasing exponentially along 
the longitudinal coordinate x in order to obtain the observed increase in the amplitude of 
the perturbations downstream along the flow, which gives rise to turbulent pulsations. Natu- 
rally, for the class indicated, there are no theorems guaranteeing the uniqueness of the so- 
lution. However, as pointed out in [11], the classical solution with the field of perturba- 
tions becoming degenerate with x § • is unacceptable from a physical point of view. 

In order to ensure a unique choice of solutions at supercritical oscillator frequencies, 
an additional postulate is necessary. As experiments show, no sudden changes (at least at 
moderate distances from the sources) in the fields of the perturbations occur when m reaches 
one of the critical values Us* and ~a*. For this reason, we shall require that the solution 
of the linear problem given by Eqs. (4.2)-(4.3) be continuous with respect to m for any finite 
x. This requirement indicates that relations (4.2) and (4.3) remain in force for any ~a~ 
~ ,  and m > ma,. All boundary conditions of theproblemwill be satisfied, since the use 
of Eqs. (4.2) and (4.3) at supercritical frequencies is allowed by the possibility of adding 
to the solution constructed with the help of integral transformations characteristic func- 
tions increasing exponentially with x § ~. The residues res ~(ksl) and res ~(kal) give the 
characteristic functions sought, which represent the first mode of the symmetrical and anti- 

symmetrical Tollmin--Schlikhting waves. 

The rule presented above gives a continuous evolution of linear perturbations with re- 
spect to m in a region where there are no turbulent pulsations developing at some distance 
from the sources. Of course, it has a universal character and is applicable equally to the 
boundary layer on a plate and developed viscous flow in a channel or pipe. 

Calculations of the real and imaginary parts of the excess pressure for identical oscil- 
lators oscillating in phase are presented in Figs. 2 and 3, respectively. It was assumed 
that the parameter Be = 0.97, while hs(x) = h~(x) = h(x) and, in addition, 

h ( x ) =  ' - - x ,  t ~ x ~ 2 ,  

|0 ,  2 ~ x ,  

from where we obtain the Fourier transform h(k) = --(l -- eik)2/k=. In this case, only anti- 
symmetrical perturbations are excited, for which Eqs. (2.7) reduce to 

b = d = i ~ k ~ ( ~ )  h (k) 
k ill3ka/a,, 5/3 ~h k " 

The number  1 i n d i c a t e s  waves  w i t h  s u b c r i t i c a l  f r e q u e n c y  m = 2 < ~a* and  t h e  number  2 i n d i -  
c a t e s  waves  w i t h  s u p e r c r i t i e a l  f r e q u e n c y  ~ = 2 . 9 2  > ~ a * .  We r e c a l l  t h a t  f o r  ~e = 0 . 9 7 ,  t h e  
c r i t i c a l  f r e q u e n c y  o f  f r e e  a n t i s y m m e t r i c a l  p e r t u r b a t i o n s  ~a* = 2 . 8 1 .  E q u a t i o n s  ( 4 . 1 ) - ( 4 . 3 )  
we re  u s e d  i n  t h e  c a l c u l a t i o n s  b o t h  f o r  s u b c r i t i c a l  and  s u p e r c r i t i c a l  r e g i m e s .  U p s t r e a m  f rom 
the oscillators, the signals emitted damp out extremely rapidly and a small intensification 
of the wave process occurs downstream from the sources at frequency ~ = 2.92. 
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STATISTICAL CHARACTERISTICS OF A PASSIVE ADMIXTURE IN A 

HOMOGENEOUS ISOTROPIC TURBULENCE FIELD 

I. V. Nikitina and A. G. Sazontov UDC 532.517.4 

]. It is well known that in studying different physical phenomena, in particular in 
order to understand mixing processes, it is necessary to know the spectral characteristics 
of the passive admixture located in a developed turbulence field []]. Information on the 
statistical properties of the corresponding scalar fields (concentration, temperature, mois- 
ture content and so on) is important in analyzing the propagation and scattering of acous- 
tical, optical, and radio waves in a turbulent medium [2]. 

In this paper, we study the spectral structure of a passive admixture with the help of a 
regular procedure, based on Wyld's diagrammatic technique [3]. Using improved approximations 
of direct interactions, we find the spectrum of the passive impurity in the inertial-convec- 
tive interval, obtained previously from dimensional considerations [4, 5] and semiempirical 
theories, which are reviewed in [6, 7]. The flow direction of the passive admixture is deter- 
mined from the scale spectrum. The asymptotic behavior of the spectrum is studied in the 
viscodiffusion interval of wave numbers. For generality of the presentation, the spectral 
characteristics are analyzed in a space with arbitrary dimensionality d. 

2. In order to describe the passive admixture in the homogeneous isotropic turbulence 
field, we shall examine the Navier--Stokes equations, the equation of continuity, and the dif- 
fusion equation, which in the k representation have the form 

( ~--}-+ v k~)\ ark= ~i D~v ~ ~*~'*v~(d) (k + kl + k~) k l ~ k ,  ~ . ,  

k ~ ' ~  - -  O, 

- -  k l U k 2  U 21 1 2~ 

Gor'kJi. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 73-79, July-August, 1982. Original article submitted July ]6, ]98]. 
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